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Clustering

✤ Grouping together similar data points into distinct partitions. 
Items in same cluster are more similar to each other than to the 
items in other clusters.

✤ Common unsupervised machine learning technique.

✤ Used for aggregating and summarizing complex multi-
dimensional data. Very important exploratory step to 
understand data before any statistical analysis or data mining.  

✤ From perception POV, a scatterplot is the best way to visualize 
clusters, often accompanied by a low-dimensional projection 
(PCA/MDS/tsne) onto 2 dimensions.





Clustering algorithms
✤ There are a plethora of clustering algorithms that differ in 

their set of assumptions on data & clusters, and the methods 
to effectively find clusters.

✤ These algorithms have their strengths and weaknesses.

✤ The choice of appropriate clustering algorithm and its 
parameters depend on the individual data set and intended 
use of the results.

✤ However, given a particular dataset and analytical task, 
there are NO systematic procedures for knowing which 
algorithm will provide the best clustering.





Centroid-based Clustering algorithms
✤ Find cluster representatives, centroids, and assign a data point to the cluster whose 

centroid is the nearest to the data point. 

✤ Incredibly hard problem: Infinitely many possibilities, NP hard! Slightly easier version: k-
means, assumes there are k clusters in the data. Still NP hard! Can obtain approximate 
solution (local minima).

✤  Lloyd’s algorithm: Start with k random centroids, assign points to the nearest centroid, 
choose new centroid as the mean of the points in the clusters and repeat until a stopping 
criterion.

✤ Partitions data into a Voronoi diagram, also related to Expectation-Maximization. 

✤ Use case: General-purpose, even cluster size, flat geometry, not too many clusters.

✤ Requires: choice of metric, apriori knowledge of k. 

✤ Drawbacks: Prefers convex and isotropic clusters, not robust to randomness.

✤ Modifications: k-mediods, k-medians, k-means++, fuzzy c-means.  



Connectivity-based clustering algorithms

✤ AKA Hierarchical clustering, provides a nested partitioning of the data 
by successively merging (agglomerative) or splitting (divisive) them, 
thereby producing a hierarchy which can be shown visually as a 
dendrogram.

✤ The root of the dendrogram is the unique cluster containing all the data 
points, and the leaves are clusters each containing exactly one data point. 

✤ e.g. in Agglomerative clustering, each data point starts as an individual 
cluster and are then merged in successive steps.

✤ Use case: Many clusters, possibly connectivity constraints, non Euclidean 
distances.

✤ Requires: Choice of a metric (distance between two data points), Linkage 
criterion (distance between two clusters).





different metric choices 

Different linkages in sklearn



Density-based clustering algorithms

✤ Attempts to find regions of high density (clusters) in the data which are 
separated by regions of low density (boundaries/noise).

✤ Can detect clusters of any shape, not just convex.

✤ e.g. DBSCAN: Find highly dense regions as clusters and assign points in the low-
density regions to the cluster they are closer to. Unassigned points are outliers.

✤ Use case: Non-flat geometry, uneven cluster sizes, outliers

✤ Requires: Quantify density (e.g. set of points for each of which there exists m 
number of points at a distance less then d, in sklearn, min_samples and eps).

✤ Drawbacks: Need sharp density gradient to detect clusters, not effective where 
the gradient is continuous e.g. a mixture of Gaussians.

✤ Variants: OPTICS, Mean Shift





Probability-based clustering algorithms
✤ Distinct clusters are samples from distinct probability distributions. Assume 

a distribution model, and try to separate based on the parameter estimates.

✤ Gaussian Mixture model: The data points are generated from a mixture of a 
finite number of Gaussian distributions with unknown parameters which 
are estimated using Expectation-Maximization algorithm.

✤ Usually overfits unless constrained model is used, e.g. fixing the number of 
Gaussians (number of clusters), in fact GMM is a generalisation of k-means 
to include covariance. 

✤ Can also constrain covariance. 

✤ Use case: Flat geometry, good for density estimation.

✤ Requires: k (usually), covariance constraint, convergence threshold for EM 
algorithm, initialization for parameters.



 Cluster analysis performed on an artificial dataset ("Mouse", similar to a 
well-known comic figure) comparing k means and EM clustering 

results.

https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/Expectation-maximization_algorithm


Issues in cluster analysis
✤ So many algorithms to choose from, NO systematic-

mathematical way to decide. Optimal parameters for the 
chosen algorithm depends on the dataset and the analytical 
task at hand.

✤ “The notion of cluster can’t be precisely defined. Clustering is in the 
eyes of the beholder.”  - Why so many clustering algorithms, 
Vladimir Estivill-Castro 

✤ Ability to compare various clustering results and estimate 
quality of a clustering result.

✤ Unsupervised method - lack of ground truth. Evaluation is 
difficult. 





Clustering evaluation metrics
✤ Difficult task, at least as difficult as clustering (Pfitzner et 

al).

✤ External evaluation: results are compared with ground 
truth. Not practical.

✤ Internal evaluation: results are aggregated into a single 
statistic. Without ground truth. 

✤ Manual evaluation: human expert makes decision, not 
practical in this big data paradigm.

✤ Internal evaluation with human-in-the-loop ?



Silhouette coefficient
✤ The Silhouette Coefficient is a measure of how similar a point is to its own cluster compared 

to other clusters, where a high value indicates that the object is well matched to its own 
cluster and poorly matched to neighbouring clusters.

✤  For a data point x proposed to be in cluster C, the Silhouette Coefficient is defined as 

✤ where       is the average distance between x and all other points in C, and        is the 
distance between x and all the points in the cluster nearest to x. 

✤ The Silhouette coefficient for the whole clustering is defined to be mean of the values for all 
the data points. The value lies in (−1, 1) where the higher the value of the coefficient, the 
better the clustering .

✤ Reference: P. J. Rousseeuw Silhouettes: A graphical aid to the interpretation and validation of 
cluster analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987 
(sklearn.metrics.silhouette_score)

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html#sklearn.metrics.silhouette_score


Calinski-Harabaz index
✤ The Calinski-Harabaz index of a clustering is defined as the ratio of the between-cluster 

variance and the within-cluster variance. 

✤ Well-defined clusters have higher between-cluster variance and lower within-cluster 
variance, thus higher value of the index. 

✤ For k clusters, CZ(k) = Total inter-cluster variance / Total intra-cluster variance, 
where

✤ Here i-th cluster,       has mean         and contains         elements, and        is the overall 
mean of the data.

✤ Reference:  M. Kozak. “A dendrite method for cluster analysis” by Calinski and Harabaz: A 
classical work that is far too often incorrectly cited. Communications in Statistics - Theory 
and Methods, 41(12):2279–2280, 2012 (sklearn.metrics.calinski_harabaz_score)

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.calinski_harabaz_score.html#sklearn.metrics.calinski_harabaz_score


Davies-Bouldin coefficient
✤ Similar to Calinski-Harabaz index, is defined as the average over all clusters the ratio 

of within-cluster dispersion and the pairwise between-cluster dispersion. 

✤ Here       is the average distance between each point in the i-th cluster and its 
centroid, and          is the average distance between the centroids of the i-th and the 
j-th cluster.

✤ Smaller the Davies-Bouldin index, better the clustering results are.

✤ Reference: D. L. Davies and D. W. Bouldin. A cluster separation measure. IEEE Trans. 
Pattern Anal. Mach. Intell., 1(2):224–227, Feb. 1979.



Gap statistic
✤ The elbow method, where a metric(usually within to between-cluster distance ratio) is plotting 

against an internal parameter, is a popular and intuitive method to find the optimal value of the 
parameter. Tibshirani et al provided a statistical formulation of this technique and defined gap 
statistic. 

✤ The idea is to consider clustering of random permutations of the data to observe how they 
compare with a null reference distribution of data with no clustering structure. 

✤ Reference: R. Tibshirani, G. Walther, and T. Hastie. Estimating the number of clusters in a dataset via 
the gap statistic. 63:411–423, 2000. 
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Sdb_w
✤ Sdb_w attempts to measure quality by taking into consideration the 

compactness, separation, and the density of the clusters .

✤ Relies on the notion of the density of a point x relative to a pair of clusters which 
is equal to the number of points in these clusters which are inside a ball 
centered at x. 

✤ Defined under the assumption that for each pair of clusters, the density of at 
least one of the centroids must be greater than the density of their midpoint to 
have a good clustering 

✤ Reference: M. Halkidi and M. Vazirgiannis. Clustering validity assessment: 
Finding the optimal partitioning of a data set. In Proceedings of the 2001 IEEE 
International Conference on Data Mining, ICDM ’01, pp. 187–194. IEEE 
Computer Society, Washington, DC, USA, 2001 



Selecting number of clusters using Silhouette analysis

k=3,5 are not good options!!  
Which is the best (most optimal) value of k?



Clustervision
✤ Clustervision is a visual analytical tool that helps ensure data 

scientists find the right clustering among the large amount of 
techniques and parameters available.

✤ Developed by researchers at IBM Watson Research Center.

✤ The system clusters data using a variety of clustering techniques 
and parameters and then ranks clustering results utilizing five 
quality scoring metrics. 

✤ The visual user interface allows users to find high quality clustering 
results, explore the clusters using several coordinated visualization 
techniques, and select the cluster result that best suits their task.

✤ To appear at IEEE Vis October 2017.





Randomness in clustering
✤ Many clustering algorithms like k-means, GMM use a random initialization.

✤ Since these algorithms are approximate solutions to the optimization 
problem, they attempt to find a local minima. 

✤ Which local minima is found, depends on the initial state, and thus we can 
get different results for multiple runs on same data, using same algorithm and 
its parameters.

✤ Also makes difficult to compare the clustering results from different models.



Consensus clustering
✤ One way to get better hold of the sensitivity to random initialization is to do 

multiple runs of the clustering algorithm, and observe the differences between 
the runs. 

✤ Ideally, define a statistic which quantifies the differences among the results of 
different runs in the ensemble. 

✤ First, define the consensus matrix whose entries reflect the probability that two 
different data items belong to the same cluster. Perform clustering m times, 
then the ij-th entry in the consensus matrix C_ij = #(i and j are in same cluster)/m

✤ Define dispersion of the clustering as

✤ The value of the coefficient is 1 for a perfect consensus matrix (all entries 0 or 
1). Ideally we want this value to the as close to 1 as possible. This indicates that 
the different clusterings in the ensemble are statistically similar and are thus 
robust of the random initializations.



Consensus clustering
✤ This can also be used as a clustering evaluation metric and thus can 

be used to compute the optimal number of clusters. Compute 
dispersion for different values of k and then choose k with maximal 
value of dispersion.

✤ Another such metric is cophenetic correlation.

✤ If multiple clusterings have been obtained for a given dataset e.g. 
for different algorithms, same algorithm different parameters, 
different initialization etc. it’s desirable to obtain a single clustering 
which is an aggregate of all the runs in the ensemble. Such a 
clustering, called consensus clustering, provides a reconciliation of 
clusterings from different sources.

✤ Many different ways to compute the consensus clustering.





Consensus clustering computation
✤ The rows of the consensus matrix provides a vector 

representation for the data points in terms of how they 
were clustered across multiple runs. 

✤ Compute the point-wise similarity.

✤ Various metrics like cosine, Euclidean, KL-divergence etc. 
can be used to compute the similarity. 

✤ Now we perform another clustering on the similarity 
matrix to obtain the consensus.

✤  


